Fifteen months of *Swift* What have we learnt?

Trieste, 2006 March 24 Daniele Malesani, SISSA

Outline

- 1. A short introduction to GRBs
- 2. Swift: an overall description
- 3. Fifteen months of *Swift* (a.k.a. how to survive it?)
 - * Short gamma-ray bursts
 - * Surprises in GRB physics
 - * Using GRBs to explore the Unverse
 - * A new supernova/GRB connection

Gamma-ray bursts - basic facts

Brief, sudden, intense flash of gamma-ray radiation

Afterglows

Long-lasting (days to weeks) multiwavelength counterparts in the X-ray, optical and radio band

Very bright soon after GRB: $R \sim 15-18$, $F_{\chi} \sim 10^{-10} \text{ erg s}^{-1} \text{ cm}^{-2}$

What are GRBs?

Afterglows \Rightarrow redshift \Rightarrow **distance & energetics** Cosmological events: $\langle z \rangle = 1$ GRBs energies: $10^{51} - 10^{54} \text{ erg} \Rightarrow 10^{51} \text{ erg}$ if collimated Very rare in the Universe (~1/100 of SNe)

LONG GRBs

- Association with
 core-collapse SNe
- * Star-forming host galaxies
- Connection with cosmic star formation

SHORT GRBs

- * Not associated with recent star formation
- * Differentiated host galaxies
- * Binary compact object binary mergers?

The Swift satellite

* Sensitivity: V = 20

BURST ALERT TELESCOPE

- * Imaging: 15-150 keV
- * Precision: 2-3 arcmin
- * Field of view: 1/6 of sky

X-RAY TELESCOPE

- * Imaging in 0.2–10 keV
- * Precision: 3 arcsec
- * Sensitivity: 2×10⁻¹⁴ cgs

Swift aims

- * To quickly (~1–2 min) repoint XRT and UVOT: study of the early afterglows
- * To observe GRBs across a large spectral band
- * To collect a large sample of GRBs and afterglows
- * To study **short gamma-ray bursts**
- * To trigger **ground-based follow-up** (spectroscopy)

In other words...

* To boldly go where no man has gone before

The Swift GRB sample

Launch: 2004 November 20 (15 months operations)

2005 Feb – 2006 Jan:

	Total	Long	Short
GRBs	96	85	11
X-ray AG	81	75	6
Optical AG	43	40	3
Redshift	29	27	2

Afterglows for short GRBs! (I)

No arcsec position for a short GRB before Swift

GRB 050509B – first short GRB X-ray afterglow – very faint!

Afterglows for short GRBs! (II)

GRB 050724 – the bright one: optical + X-ray – z = 0.258

Malesani et al. 2024 Berger et al. 2005

GRB 051221 - z = 0.5459

Soderberg et al. 2006

Clues to short GRB progenitors

Host galaxies: both early and late type

No associated supernova

Low redhisft distribution ($z \sim 0.2$)

"Low" energy (10⁵⁰ erg)

Coalescence of a **binary compact object** system NS + NS or NS + BH?

Key parameter: merging time

Romano et al. 2006

The GRB/afterglow transition

Filling the gap between the prompt and afterglow phases

The afterglow smoothly joins to the prompt emission

There is a
 steep decay
 after the GRB

Tagliaferri et al. 2005

The "canonical" light curve

A sleepless engine: the flares

Falcone et al. 2006

More and more flares

More and more flares

The (long) GRB redshift distribution

Swift afterglows are **faint**

Significantly larger redshift than previous missions

$$\langle z \rangle = 2.8$$
 vs $\langle z \rangle = 1.6$

GRBs are thus ideal **probes** of the high-redshift Universe

The record! GRB 050904

GRB afterglow spectroscopy

The ISM of star-forming galaxies

GRBs probe the very regions where star formation is active

AGN DLAGRB DLAAGNabsorberobserverdistribution observerdistribution observer<math>distribution observer<td

Direct measurements of gas properties in star forming regions

The GRB/SN connection

SN 2006aj - another hypernova

Detailed spectroscopic monitoring

Broad-lined "hypernova"

Coming soon

(The end for now)